Part Number Hot Search : 
25F40 CMM5104 MC74VH OM1327 A224M FS5VS 70N06 L20PF
Product Description
Full Text Search
 

To Download IRGS10B60KDTRLP Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  insulated gate bipolar transistor withultrafast soft recovery diode  01/07/13 low vce (on) non punch through igbt technology. low diode vf. 10 s short circuit capability. square rbsoa. ultrasoft diode reverse recovery characteristics. positive vce (on) temperature coefficient. lead-free benefits www.irf.com 1 benchmark efficiency for motor control. rugged transient performance. low emi. excellent current sharing in parallel operation. absolute maximum ratings  parameter max. units v ces collector-to-emitter voltage 600 v i c @ t c = 25c continuous collector current 35 i c @ t c = 100c continuous collector current 19 i cm pulsed collector current 44 i lm clamped inductive load current  44 a i f @ t c = 25c diode continuous forward current 35 i f @ t c = 100c diode continuous forward current 19 i fm diode maximum forward current 44 v ge gate-to-emitter voltage 20 v p d @ t c = 25c maximum power dissipation 156 p d @ t c = 100c maximum power dissipation 62 t j operating junction and -55 to +150 t stg storage temperature range c soldering temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)  thermal resistance  parameter min. typ. max. units r jc junction-to-case - igbt CCC CCC 0.8 r jc junction-to-case - diode CCC CCC 3.4 r cs case-to-sink, flat, greased surface CCC 0.50 CCC c/w r ja junction-to-ambient, typical socket mount  CCC CCC 62 r ja junction-to-ambient (pcb mount, steady state)  CCC CCC 40 wt weight CCC 1.44 CCC g irgb10b60kdpbfirgs10b60kdpbf irgsl10b60kdpbf e g n-channel c v ces = 600v i c = 19a, t c =100c t sc > 10 s, t j =150c v ce(on) typ. = 1.8v d 2 pak irgs10b60kdpbf to-220ab irgb10b60kdpbf to-262 irgsl10b60kdpbf 
downloaded from: http:///
irg/b/s/sl10b60kdpbf 2 www.irf.com parameter min. typ. max. units conditions v (br)ces collector-to-emitter breakdown voltage 600 CCC CCC v v ge = 0v, i c = 500 a ? v (br)ces / ? t j temperature coeff. of breakdown voltage CCC 0.3 CCC v/c v ge = 0v, i c = 1.0ma, (25c-150c) v ce(on) collector-to-emitter saturation voltage 1.5 1.80 2.20 i c = 10a, v ge = 15v CCC 2.20 2.50 v i c = 10a, v ge = 15v t j = 150c v ge(th) gate threshold voltage 3.5 4.5 5.5 v v ce = v ge , i c = 250 a ? v ge(th) / ? t j temperature coeff. of threshold voltage CCC -10 CCC mv/c v ce = v ge , i c = 1.0ma, (25c-150c) g fe forward transconductance CCC 7.0 CCC s v ce = 50v, i c = 10a, pw=80 s i ces zero gate voltage collector current CCC 3.0 150 av ge = 0v, v ce = 600v CCC 300 700 v ge = 0v, v ce = 600v, t j = 150c v fm diode forward voltage drop CCC 1.30 1.45 i c = 10a CCC 1.30 1.45 v i c = 10a t j = 150c i ges gate-to-emitter leakage current CCC CCC 100 na v ge = 20v electrical characteristics @ t j = 25c (unless otherwise specified) ref.fig. 5, 6,79,10,11 9,10,11 12 8 parameter min. typ. max. units conditions qg total gate charge (turn-on) CCC 38 CCC i c = 10a qge gate - emitter charge (turn-on) CCC 4.3 CCC nc v cc = 400v qgc gate - collector charge (turn-on) CCC 16.3 CCC v ge = 15v e on turn-on switching loss CCC 140 247 ji c = 10a, v cc = 400v e off turn-off switching loss CCC 250 360 v ge = 15v,r g = 47 , l = 200 h e tot total switching loss CCC 390 607 ls = 150nh t j = 25c  t d(on) turn-on delay time CCC 30 39 i c = 10a, v cc = 400v t r rise time CCC 20 29 v ge = 15v, r g = 47 , l = 200 h t d(off) turn-off delay time CCC 230 262 ns ls = 150nh, t j = 25c t f fall time CCC 23 32 e on turn-on switching loss CCC 230 340 i c = 10a, v cc = 400v e off turn-off switching loss CCC 350 464 jv ge = 15v,r g = 47 , l = 200 h e tot total switching loss CCC 580 804 ls = 150nh t j = 150c  t d(on) turn-on delay time CCC 30 39 i c = 10a, v cc = 400v t r rise time CCC 20 28 v ge = 15v, r g = 47 , l = 200 h t d(off) turn-off delay time CCC 250 274 ns ls = 150nh, t j = 150c t f fall time CCC 26 34 c ies input capacitance CCC 620 CCC v ge = 0v c oes output capacitance CCC 62 CCC pf v cc = 30v c res reverse transfer capacitance CCC 22 CCC f = 1.0mhz t j = 150c, i c = 44a, vp =600v v cc = 500v, v ge = +15v to 0v, st j = 150c, vp =600v,r g = 47 v cc = 360v, v ge = +15v to 0v erec reverse recovery energy of the diode CCC 245 330 jt j = 150c t rr diode reverse recovery time CCC 90 105 ns v cc = 400v, i f = 10a, l = 200 h i rr diode peak reverse recovery current CCC 19 22 a v ge = 15v,r g = 47 , ls = 150nh switching characteristics @ t j = 25c (unless otherwise specified) rbsoa reverse bias safe operting area full square scsoa short circuit safe operting area 10 CCC CCC ref.fig. ct1 ct4 ct4 13,15 wf1wf2 4 ct2 ct3 wf4 17,18,19 20, 21 ct4,wf3 ct4 r g = 47 14, 16 ct4 wf1wf2 note  to  are on page 15 downloaded from: http:///
irg/b/s/sl10b60kdpbf www.irf.com 3 fig. 1 - maximum dc collector current vs. case temperature fig. 2 - power dissipation vs. case temperature fig. 3 - forward soa t c = 25c; t j 150c fig. 4 - reverse bias soa t j = 150c; v ge =15v 0 20 40 60 80 100 120 140 160 t c (c) 0 20 40 60 80 100 120 140 160 180 p t o t ( w ) 10 100 1000 v ce (v) 0 1 10 100 i c a ) 1 10 100 1000 10000 v ce (v) 0.1 1 10 100 i c ( a ) 10 s 100 s 1ms dc 20 s 0 20 40 60 80 100 120 140 160 t c (c) 0 5 10 15 20 25 30 35 40 i c ( a ) downloaded from: http:///
irg/b/s/sl10b60kdpbf 4 www.irf.com fig. 6 - typ. igbt output characteristics t j = 25c; tp = 80 s fig. 5 - typ. igbt output characteristics t j = -40c; tp = 80 s fig. 8 - typ. diode forward characteristics tp = 80 s fig. 7 - typ. igbt output characteristics t j = 150c; tp = 80 s 0123456 v ce (v) 0 5 10 15 20 25 30 35 40 i c e ( a ) v ge = 18v vge = 15v vge = 12v vge = 10v vge = 8.0v 0123456 v ce (v) 0 5 10 15 20 25 30 35 40 i c e ( a ) v ge = 18v vge = 15v vge = 12v vge = 10v vge = 8.0v 0.0 0.5 1.0 1.5 2.0 2.5 3.0 v f (v) 0 5 10 15 20 25 30 35 40 i f ( a ) -40c 25c 150c 0123456 v ce (v) 0 5 10 15 20 25 30 35 40 i c e ( a ) v ge = 18v vge = 15v vge = 12v vge = 10v vge = 8.0v downloaded from: http:///
irg/b/s/sl10b60kdpbf www.irf.com 5 fig. 10 - typical v ce vs. v ge t j = 25c fig. 9 - typical v ce vs. v ge t j = -40c fig. 11 - typical v ce vs. v ge t j = 150c fig. 12 - typ. transfer characteristics v ce = 50v; tp = 10 s 5 1 01 52 0 v ge (v ) 0 2 4 6 8 10 12 14 16 18 20 v c e ( v ) i ce = 5.0a i ce = 10a i ce = 15a 51 01 52 0 v ge (v) 0 2 4 6 8 10 12 14 16 18 20 v c e ( v ) i ce = 5.0a i ce = 10a i ce = 15a 0 5 10 15 20 v ge (v ) 0 10 20 30 40 50 60 70 80 i c e ( a ) t j = 25c t j = 150c t j = 150c t j = 25c 51 01 52 0 v ge (v) 0 2 4 6 8 10 12 14 16 18 20 v c e ( v ) i ce = 5.0a i ce = 10a i ce = 15a downloaded from: http:///
irg/b/s/sl10b60kdpbf 6 www.irf.com fig. 14 - typ. switching time vs. i c t j = 150c; l=200 h; v ce = 400v r g = 47 ; v ge = 15v fig. 13 - typ. energy loss vs. i c t j = 150c; l=200 h; v ce = 400v r g = 47 ; v ge = 15v fig. 16 - typ. switching time vs. r g t j = 150c; l=200 h; v ce = 400v i ce = 10a; v ge = 15v fig. 15 - typ. energy loss vs. r g t j = 150c; l=200 h; v ce = 400v i ce = 10a; v ge = 15v 0 50 100 150 r g ( ) 0 50 100 150 200 250 300 350 400 450 500 e n e r g y ( j ) e on e off 0 5 10 15 20 25 i c (a) 0 100 200 300 400 500 600 700 800 e n e r g y ( j ) e off e on 0 5 10 15 20 25 i c (a) 10 100 1000 s w i c h i n g t i m e ( n s ) t r td off t f td on 0 50 100 150 r g ( ) 10 100 1000 s w i c h i n g t i m e ( n s ) t r td off t f td on downloaded from: http:///
irg/b/s/sl10b60kdpbf www.irf.com 7 fig. 17 - typical diode i rr vs. i f t j = 150c fig. 18 - typical diode i rr vs. r g t j = 150c; i f = 10a fig. 20 - typical diode q rr v cc = 400v; v ge = 15v;t j = 150c fig. 19 - typical diode i rr vs. di f /dt v cc = 400v; v ge = 15v; i ce = 10a; t j = 150c 0 50 100 150 r g ( ) 0 5 10 15 20 25 i r r ( a ) 0 500 1000 1500 di f /dt (a/ s) 0 5 10 15 20 25 i r r ( a ) 0 5 10 15 20 25 i f (a) 0 5 10 15 20 25 i r r ( a ) r g = 10 r g = 22 r g = 47 r g = 100 0 500 1000 1500 di f /dt (a/ s) 400 500 600 700 800 900 1000 1100 1200 q r r ( n c ) 22 47 100 10 20a 10a 5.0a downloaded from: http:///
irg/b/s/sl10b60kdpbf 8 www.irf.com fig. 21 - typical diode e rr vs. i f t j = 150c fig. 23 - typical gate charge vs. v ge i ce = 10a; l = 600 h fig. 22 - typ. capacitance vs. v ce v ge = 0v; f = 1mhz 0 5 10 15 20 25 i f (a ) 0 50 100 150 200 250 300 350 400 450 e n e r g y ( j ) 22 10 47 100 0 1 02 03 04 0 q g , total gate charge (nc) 0 2 4 6 8 10 12 14 16 v g e ( v ) 300v 400v 1 10 100 v ce (v) 10 100 1000 c a p a c i t a n c e ( p f ) cies coes cres downloaded from: http:///
irg/b/s/sl10b60kdpbf www.irf.com 9 fig 25. maximum transient thermal impedance, junction-to-case (diode) fig 24. maximum transient thermal impedance, junction-to-case (igbt) 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1e+0 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1e+0 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.285 0.0001340.241 0.000565 0.288 0.0083 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci i / ri ci= i / ri ri (c/w) i (sec) 0.846 0.0001491.830 0.001575 1.143 0.027005 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci i / ri ci= i / ri downloaded from: http:///
irg/b/s/sl10b60kdpbf 10 www.irf.com fig.c.t.1 - gate charge circuit (turn-off) fig.c.t.2 - rbsoa circuit 1k vcc dut 0 l fig.c.t.3 - s.c.soa circuit fig.c.t.4 - switching loss circuit fig.c.t.5 - resistive load circuit l rg vcc diode clamp / dut dut / driver - 5v rg vcc dut r = v cc i cm l rg 80 v dut 480v + - dc driver dut 360v downloaded from: http:///
irg/b/s/sl10b60kdpbf www.irf.com 11 -100 0 100 200 300 400 500 600 -0.20 0.00 0.20 0.40 0.60 0.80 time( s) v ce (v) -2 0 2 4 6 8 10 12 i ce (a) 90% i ce 5% v ce 5% i ce eoff loss tf -100 0 100 200 300 400 500 600 15.90 16.00 16.10 16.20 time ( s) v ce (v) -5 0 5 10 15 20 25 30 i ce (a) test current 90% test current 5% v ce 10% test current tr eon loss -600 -500 -400 -300 -200 -100 0 100 -0.15 -0.05 0.05 0.15 0.25 time ( s) v f (v) -20 -15 -10 -5 0 5 10 15 i f (a) pe ak i rr t rr q rr 10% peak irr 0 50 100 150 200 250 300 350 400 -5.00 0.00 5.00 10.00 15.00 time ( s) v ce (v) 0 50 100 i ce (a) v ce i ce fig. wf3- typ. diode recovery waveform @ t j = 150c using fig. ct.4 fig. wf4- typ. s.c waveform @ t j = 150c using fig. ct.3 fig. wf1- typ. turn-off loss waveform @ t j = 150c using fig. ct.4 fig. wf2- typ. turn-on loss waveform @ t j = 150c using fig. ct.4 downloaded from: http:///
irg/b/s/sl10b60kdpbf 12 www.irf.com 
     example: in the assembly line "c" t his is an irf 1010 lot code 1789 as s emb le d on ww 19, 1997 part number as s e mb l y lot code dat e code year 7 = 1997 line c we e k 19 logo rect ifier int e rnat ional note: "p" in assembly line position indicates "lead-free" 
    
         downloaded from: http:///
irg/b/s/sl10b60kdpbf www.irf.com 13  

      

    dimensions are shown in millimeters (inches) note: "p" in assembly line pos i ti on i ndi cates "l ead- f r ee" f530s t his is an irf530s wit h lot code 8024 as s emb led on ww 02, 2000 in the assembly line "l" as s e mb l y lot code international rectifier logo part number dat e code year 0 = 2000 we e k 02 line l  f530s a = assembly site code week 02 p = de s i gnat e s l e ad- f r e e product (opt ional) rectifie r int ernat ional logo lot code assembly ye ar 0 = 2000 dat e code part number downloaded from: http:///
irg/b/s/sl10b60kdpbf 14 www.irf.com as s e mb l y lot code rectifier international as s embled on ww 19, 1997 note: "p" in ass embly line pos i t i on i ndi cates "l ead- f r ee" in the assembly line "c" logo t his is an ir l3103l lot code 1789 example: line c dat e code we e k 19 ye ar 7 = 1997 part number part number logo lot code as s e mb l y international rectifier product (optional) p = d e s ign at e s l e ad-f r e e a = as s e mb l y s i t e code we e k 19 year 7 = 1997 dat e code or to-262 part marking information to-262 package outlinedimensions are shown in millimeters (inches) downloaded from: http:///
irg/b/s/sl10b60kdpbf www.irf.com 15 notes:  this is only applied to to-220ab package   this is applied to d 2 pak, when mounted on 1" square pcb ( fr-4 or g-10 material ). for recommended footprint and soldering techniques refer to application note #an-994.  energy losses include "tail" and diode reverse recovery.  v cc = 80% (v ces ), v ge = 20v, l = 100 h, r g = 47 . to-220 package is not recommended for surface mount application  
        dimensions are shown in millimeters (inches) 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 01/2013 data and specifications subject to change without notice. this product has been designed and qualified for industrial market. qualification standards can be found on irs web site. downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRGS10B60KDTRLP

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X